metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Martha Poisot, Christian Näther* and Wolfgang Bensch

Institut für Anorganische Chemie, Christian-Albrechts-Universität Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany

Correspondence e-mail: cnaether@ac.uni-kiel.de

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.009 Å Disorder in main residue R factor = 0.041 wR factor = 0.098 Data-to-parameter ratio = 17.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(diethylenetriamine)cobalt(II) tetrathiomolybdate(VI) oxotrithiamolybdate(VI)

In the crystal structure of the title compound, $[Co(C_4H_{13}N_3)_2]_2[MoS_4][MoS_3O]$, discrete $[MoS_4]^{2-}$ and $[MoS_3O]^{2-}$ anions, as well as $[Co(C_4H_{13}N_3)_2]^{2+}$ cations are found. Both anions occupy the same crystallographic position and are therefore disordered. The Co atom is octahedrally coordinated by six N atoms of the diethylenetriamine ligand whereas the Mo atom shows a distorted tetrahedral geometry.

Comment

During the past few years, a large number of tetrathiomolybdates have been prepared in the presence of an organic cation. Compared to the number of such compounds, those containing a transition metal complex cation are rare and some examples are $[Ni(en)_3]MoS_4$ (en is ethylenediamine; Ellermeier *et al.*, 1999), $[Ni(en)_3]_3(MoS_4)Br_4$ ·2en (Ellermeier, 2002), $[Mn(dien)_2]MoS_4$ (dien is diethylenetriamine; Ellermeier & Bensch, 2002), $[Ni(dien)_2]_2(MoS_4)Br_2$ (Ellermeier, 2002), $[Co_2(tren)_3]$ - $(MoS_4)_2$ (tren is triethylenetetramine; Ellermeier & Bensch, 2001), $[(C_6H_5)_4P]_2[M(MoS_4)_2]$ (M = Ni, Fe, Zn) (Müller *et al.*, 1971), and $(Pr_4N)_2[Ni(MoS_4)_2]$ (Callahan & Piliero, 1980).

The structure of the title compound consists of isolated $[Co(dien)_2]^{2+}$ cations and $[MoS_4]^{2-}$ as well as $[MoS_3O]^{2-}$ anions, which are connected via N-H···S hydrogen bonding (Fig. 1 and Table 2). Each Co^{2+} ion is sixfold coordinated by the six N atoms of two tridentate dien ligands within a distorted octahedron. The Co-N distances (Table 1) are between 2.152 (4) and 2.197 (4) Å. The trans N-Co-N angles in the title compound are in the range 177.54 (16)- $178.61 (17)^{\circ}$. The geometric parameters indicate that the CoN₆ octahedron in the title compound is less distorted than in the analogous en compound. The anion was first refined assuming that only S is bound to Mo. In this case, the Mo-S bonds were between 1.977 (3) and 2.2045 (17) Å with a difference of 0.2275 Å between the longest and the shortest bond. This is a rather large difference; in most tetrathiomolybdates the difference lies between 0.02 and 0.05 Å (Srinivasan et al.,

© 2006 International Union of Crystallography All rights reserved Received 10 May 2006 Accepted 15 May 2006

Figure 1

The asymmetric unit of the title compound, with the atom labellling and displacement ellipsoids drawn at the 50% probability level. The Mo-O bond in the disordered anion is shown as an open bond.

2004). Furthermore, the symmetry of the anion would be significantly reduced and the IR spectrum should then show a split Mo-S vibration. The relatively high anisotropic displacement parameters of S4 suggested a slight contamination with oxygen. The refinement of S4 with a split model finally yielded an $[MoS_4]^{2-}$ and an $[MoS_3O]^{2-}$ anion which are superimposed in the crystal structure (Table 1). The presence of oxygen was proved with IR spectroscopy. The partial occupancy of the S4 position by oxygen leads to a much more realistic Mo-S bond length and a reasonable Mo-O distance.

Experimental

Cobalt(II) chloride (0.5 mmol) and $(NH_4)_2MoS_4$ (0.5 mmol) were heated for 5 d at 373 K in a mixture of 3 ml diethylenetriamine and 3 ml water in a Teflon-lined steel autoclave. The resulting red–orange crystals (70% yield) were dried under vacuum.

Crystal data

$[Co(C_4H_{13}N_3)_2]_2[MoS_4][MoOS_3]$
$M_r = 962.86$
Monoclinic, $P2_1/n$
a = 7.4164 (5) Å
b = 15.9171 (11) Å
c = 15.4070 (12) Å
$\beta = 93.063 \ (9)^{\circ}$
V = 1816.2 (2) Å ³

Data collection

Stoe IPDS-1 diffractometer φ scans Absorption correction: none 11766 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.099$ S = 1.023269 reflections 191 parameters H-atom parameters constrained Z = 2 D_x = 1.761 Mg m⁻³ Mo K α radiation μ = 2.01 mm⁻¹ T = 293 (2) K Block, red-orange 0.09 × 0.09 × 0.08 mm

3269 independent reflections 2455 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.048$ $\theta_{\text{max}} = 25.7^{\circ}$

 $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0458P)^{2} + 2.2351P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.55 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.60 \text{ e} \text{ Å}^{-3}$ Extinction correction: SHELXL97
Extinction coefficient: 0.0022 (6)

Figure 2

The crystal structure of the title compound, viewed along the a axis. The O atoms have been omitted for clarity.

Table 1

Selected geometric parameters (Å, °).

Mo1-O1	1.796 (17)	Co1-N2	2.164 (4)
Mo1-S4	2.050 (6)	Co1-N11	2.182 (4)
Mo1-S2	2.1826 (16)	Co1-N1	2.191 (4)
Mo1-S3	2.1908 (16)	Co1-N13	2.196 (4)
Mo1-S1	2.2041 (14)	Co1-N3	2.197 (4)
Co1-N12	2.152 (4)		
O1-Mo1-S4	14.0 (5)	N12-Co1-N1	98.35 (16)
O1-Mo1-S2	114.5 (5)	N2-Co1-N1	80.64 (16)
S4-Mo1-S2	103.84 (19)	N11-Co1-N1	89.79 (18)
O1-Mo1-S3	112.0 (7)	N12-Co1-N13	80.48 (16)
\$4-Mo1-\$3	109.2 (2)	N2-Co1-N13	100.55 (16)
S2-Mo1-S3	108.11 (7)	N11-Co1-N13	90.77 (18)
O1-Mo1-S1	102.3 (5)	N1-Co1-N13	178.61 (17)
S4-Mo1-S1	115.37 (18)	N12-Co1-N3	100.80 (17)
S2-Mo1-S1	108.71 (6)	N2-Co1-N3	80.43 (16)
S3-Mo1-S1	111.11 (6)	N11-Co1-N3	177.54 (16)
N12-Co1-N2	178.43 (18)	N1-Co1-N3	90.75 (16)
N12-Co1-N11	81.49 (17)	N13-Co1-N3	88.74 (16)
N2-Co1-N11	97.29 (17)		

lable 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\overline{N1-H1N\cdots S4^{i}}$	0.90	2.53	3.396 (8)	161
$N1 - H2N \cdot \cdot \cdot S2$	0.90	2.79	3.497 (5)	136
$N2-H3N\cdots S3^{ii}$	0.91	2.82	3.613 (5)	147
$N3-H4N\cdots S1$	0.90	2.76	3.567 (4)	150
$N3-H5N \cdot \cdot \cdot S3^{iii}$	0.90	2.58	3.409 (4)	154
$N11 - H6N \cdot \cdot \cdot S4^{i}$	0.90	2.30	3.133 (8)	153
$N11 - H7N \cdot \cdot \cdot S1^{ii}$	0.90	2.84	3.635 (5)	149
$N12 - H8N \cdot \cdot \cdot S2$	0.91	2.73	3.525 (4)	146
$N12 - H8N \cdot \cdot \cdot S4$	0.91	2.76	3.491 (8)	138
$N13 - H9N \cdot \cdot \cdot S1^{ii}$	0.90	2.73	3.574 (5)	157

metal-organic papers

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
N13-H10N···S3 ⁱⁱⁱ	0.90	2.61	3.493 (5)	166
$N1-H1N \cdot \cdot \cdot O1^{i}$	0.90	2.34	3.18 (2)	155
$N11-H6N \cdots O1^{i}$	0.90	2.43	3.290 (18)	161
Symmetry codes: (i) x –	- 1, y, z; (ii) —	$x + \frac{1}{2}, y + \frac{1}{2}, -z$	$+\frac{3}{2}$; (iii) $-x + \frac{3}{2}$, y	$+\frac{1}{2}, -z +\frac{3}{2}.$

All H atoms were positioned with idealized geometry and were refined with fixed isotropic displacement parameters $[U_{iso}(H) = 1.2U_{eq}(C,N)]$ using a riding model, with C-H = 0.97 Å, C-H = 0.90 Å or N-H = 0.91 Å. The disordered S and O atoms were refined using a split model and anisotropic displacement parameters. Refinement of their site occupation factors proves that they are occupied 50:50, and this was assumed in the final refinement.

Data collection: *IPDS Software* (Stoe & Cie, 1998); cell refinement: *IPDS Software*; data reduction: *IPDS Software*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997; program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *XP* in *SHELXTL* (Bruker, 1998) and *DIAMOND* (Brandenburg, 1999); software used to prepare material for publication: *CIFTAB* in *SHELXTL*. This work is supported by the State of Schleswig-Holstein and by the Deutsche Forschungsgemeinschaft DFG (project: BE 1653/11–2).

References

- Brandenburg, K. (1999). *DIAMOND*. Version 2.1c. Crystal Impact GbR, Bonn, Germany.
- Bruker (1998). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Callahan, K. P. & Piliero, P. A. (1980). Inorg. Chem. 19, 2619-2626.
- Ellermeier, J. (2002). PhD thesis, Kiel University, Germany.
- Ellermeier, J. & Bensch, W. (2001). Z. Naturforsch. Teil B, 56, 611-619.
- Ellermeier, J. & Bensch, W. (2002). Monatsh. Chem. 133, 945-957.
- Ellermeier, J., Näther, C. & Bensch, W. (1999). Acta Cryst. C55, 501-503.
- Müller, A., Ahlhorn, E. & Heinsen, H. H. (1971). Z. Anorg. Allg. Chem. 386, 102–106.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Srinivasan, B. R., Dhuri, S. N., Poisot, M., Näther, C. & Bensch, W. (2004). Z. Naturforsch. Teil B, 59, 1082–1092.
- Stoe & Cie (1998). *IPDS Software*. Version 2.89. Stoe & Cie, Darmstadt, Germany.